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Abstract Landslides are occurring more frequently in China under the conditions of

extreme rainfall and changing climate, according to News reports. Landslide hazard

assessment remains an international focus on disaster prevention and mitigation, and it is

an important step for compiling and quantitatively characterizing landslide damages. This

paper collected and analyzed the historical landslide events data of the past 60 years in

China. Validated by the frequencies and distributions of landslides, nine key factors

(lithology, convexity, slope gradient, slope aspect, elevation, soil property, vegetation

coverage, flow, and fracture) are selected to construct landslide susceptibility (LS)

empirical models by back-propagation artificial neural network method. By integrating

landslide empirical models with surface multi-source geospatial and remote sensing data,

this paper further performs a large-scale LS assessment throughout China. The resulting

landslide hazard assessment map of China clearly illustrates the hot spots of the high

landslide potential areas, mostly concentrated in the southwest. The study implements a

complete framework of multi-source data collecting, processing, modeling, and synthe-

sizing that fulfills the assessment of LS and provides a theoretical basis and practical guide

for predicting and mitigating landslide disasters potentially throughout China.

A major outcome of this work is landslide historical data collection over 60 years and the development
of LS in China, through multi-factor empirical method.
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1 Introduction

Natural disasters are complex and are closely connected with environmental degradation

and human activities (Henderson 2004). Landslides, which often result in substantial

causalities and property losses, are among the most common natural disasters (Manunta

et al. 2011). Recently, landslides have occurred even more frequently, resulting in several

catastrophic events (Dunning et al. 2007; Wang et al. 2009). More than 90,000 hazards

associated with landslides have been reported in 70 cities and counties of several southern

and northwestern provinces in China, and tens of millions of people currently live under

the high-risk threat of landslides. Landslides have caused thousands of deaths and tens of

billions of RMB in property losses (Wibowo et al. 2008). Therefore, landslide monitoring,

risk assessment, and prediction are urgent subjects for the international landslide disaster

research community. Particularly in China, there is a lack of maps or guidelines for

evaluating the relative potential of landslide hazards at regional and national scales; thus, a

large-scale comprehensive landslide hazard assessment is critical for predicting and mit-

igating landslide disasters (Hong et al. 2007a, b).

Major impact factors of landslides include terrain, geology, geomorphology, weather

conditions, land cover, and others (Fernandes et al. 2004; Moreiras 2005; Nefeslioglu et al.

2008; Parry 2011). It is crucial to determine the relationships between these factors and

landslide occurrences for quantitative evaluation of landslide susceptibility (LS). LS

mapping can provide information about the spatial distribution of the probability of regional

slope instability (Mathew et al. 2009), which is the first and most important step in landslide

hazard assessment to make effective measures for landslide mitigation. Reliable evaluation

depends on the quality and range of the available data and the selection of a proper modeling

assessment framework in order to analyze landslide formation conditions and characteristics

and to show a detailed geometric description of landslides (Choi et al. 2012).

Given historical data and experiences, empirical LS evaluations usually adopt statistical

approaches and pattern recognition methods to construct empirical models. The initial

weights for landslide factors can be obtained from previous research and literature by

evaluating the relationship between spatial factors and landslide occurrences using geo-

graphical information system (GIS) (Ghosh 2011). Some studies evaluated LS using GIS

approaches with either qualitative or quantitative methods (Guzzetti et al. 1999; Qin et al.

2002; Pradhan et al. 2006; Hong et al. 2007a, b; Yalcin 2008; Mondini et al. 2011). Multi-

factor methods typically estimate LS using the relationships between past landslide patterns

and various site features (Sidle and Ochiai 2006). Some empirical models were used for LS

analysis and mapping. These models include logistic regression (LR) (statistical analysis of

diagram segments and landslide distributions), probabilistic (the relationships between the

probability of failure and landslide stability), analytical hierarchy process (AHP), and fuzzy

logic (the weight confirmation of different factors) models. However, there are several

difficulties with these methods for the identification of relevant factors used as assessment

variables for different types of landslides (Wang et al. 2012). For examples, the empirical

models are unsuitable for analyzing susceptibility, in a small-scale landslide evaluation with

uncertainty or nonlinearity problems (Bălteanu et al. 2010). An artificial neural network
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(ANN) can be used to analyze complex data, such as continuous, indexical, and binary data,

at different scales (Chauhan et al. 2010). Based on learning from data with known char-

acteristics to obtain the weights of factors, ANN has been used to recognize unknown data

(Pradhan 2011). However, few studies comprehensively established a systematic theory for

improving landslide prediction accuracy, especially at the national level. This paper pre-

sents the theory of national susceptibility by analyzing [60-year landslide events and

frequency datasets by employing BP ANN techniques. Specifically, connection weights are

determined to describe the relationship, the different factors, and susceptibility through

surface multi-geospatial data and remote sensing data for susceptibility evaluation and

mapping of China’s landslide. Figure 1 shows the workflow of our paper.

The workflow includes six parts: (1) to collect [60-year historical landslide records

from different databases; (2) to identify the impact factors by analyzing different landslide

characteristics; (3) to analyze LS with BP ANN models; (4) to calculate the evaluated

factors and compare with the sample data; (5) to obtain LS evaluation results; and (6) to

map China LS, compared with the landslide inventory ([60 years).

2 Study area

China lies in the east of the Asia–Europe continent on the western shore of the Pacific

Ocean, and it covers approximately 9.6 million km2 of land area (between latitudes 3.85�N

and 53.56�N, between longitudes 73.55�E and 135.08�E). The terrain of China is low in the

east but high in the west. Mountains, plateaus, and hills cover approximately 67 % of the

land area, whereas basins and plains cover approximately 33 %. China is among the

countries most vulnerable to landslide disasters. Landslide disasters mainly occur in

Fig. 1 LS evaluation workflow
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regions with steep slopes, such as along the bank slope zones of rivers and streams or

gorges with large elevation differences. Many landslides occur along geological tectonic

belts (fractures or structural zones), while others occur in areas with soft rock-soil (loose

covering layer, loess, mudstone, shale, coal beds). Most of landslides are induced by heavy

rainfall (He et al. 2008; Li et al. 2011; Iwahashi et al. 2012).

3 Data acquisition and processing

3.1 Historical landslide data collection and database compilation

The data of the 1,200 [60-year landslide events were obtained mainly from online news

reports, local yearbooks, and hazard databases in China, including major landslide reports

in China (from newspapers and media), the China Statistical Yearbook (1949–2011), the

China Geological Environmental Information Network (CGEIN; http://www.cigem.gov.

cn/), the China Risk Network (CRN; http://www.irisknet.cn/), and the Geostress and

Geological Disaster Querying Database (GGDQD; http://www.geomech.ac.cn/geo0503/).

A total of 1,200 records have been gathered and shown as points on the provincial

boundary map with a 10-year interval (Fig. 2).

Figure 3 shows the number of landslide events collected over 60 years. From 1949 to

the late 1970s, the reported landslide events are fewer because there was a lack of mon-

itoring techniques, and not enough importance is placed on these reports by the govern-

ment. After the 1980s, the reports and occurrences start to increase; it is the result of the

high disaster occurrence frequency and the government’s monitoring. Geographically,

landslide events are mainly distributed in the south and southwest of China, where the

main landslide-inducing factors include rainfall, earthquake, and flood. These regions can

also be characterized by the drastic topographical relief of gorges, rivers, bank slopes, the

distribution of geological tectonic belts (fault lines, earthquake zones), and geotechnical

factors (loose soil, loess, mudstone, shale, coal beds).

Fig. 2 Landslide locations and occurrences (red dots) between 1949 and 2011 in China
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The collected landslide data were compiled in a geodatabase based on GIS, which is

structured as illustrated in Table 1. The spatial accuracy of longitude and latitude is 0.01�,

equivalent to 1 km.

3.2 Landslide data uncertainty

It is a challenge to compile a national landslide database due to the limited number of

sources for collecting landslide events that cover more than 60 years. Thus, the landslide

database may lack accuracy and completeness. Common problems exist in similar studies

about the regionalization and evaluation of landslide reports (Refice and Capolongo 2002;

Che et al. 2012; Peruccacci et al. 2011).

We identify four main difficulties that affect the assessment results when compiling the

landslide database using unmapped events. First, this research involves landslides triggered

by all factors. The uncertainty in triggering factors of some collected reports renders that a

landslide event correlated with multiple triggering sources. Second, Landslides are a

complex process associated with many inducing factors, and therefore, extensive

Fig. 3 The number of landslide events over 60 years

Table 1 The structure of the collected landslide events’ data in China from 1949 to 2011

No. Time (YY/
MM/DD)

Location Cause Fatalities Economic
loss (RMB)

Name Longitude
(�)

Latitude
(�)

1 1949/5/4 Xining, Qinghai 101.80 36.60 Loess 280 –

2 1949/7/1 Open-cast coal
mines of Fushun

123.90 41.80 Excavation – 300 million
yuan

1,200 2011/9/29 Yanbian, Sichuan 101.51 26.40 Rainfall – –
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misreports in landslide might exist. Third, the data sources of landslide may be inadequate

or even vacant in many sparsely inhabited areas. In the southwest, there are many con-

ditions of landslide occurring, including plentiful rainfall, occasional earthquake, undu-

lating terrain, and loose soil. However, the number of landslide events in the same region

of Fig. 2 is not the largest. The reason is that the sparse population distribution and little

attention bring about fewer landslide reports. Finally, these events are of different scales.

The accuracies diverge significantly among different districts, counties, and provinces.

4 Multi-factor empirical LS assessment

4.1 Identification of landslide-inducing factors

Multi-factor analysis methodologies can typically assess landslide hazards using the rela-

tionships between historical landslide events and various site characteristics. In such cases,

the weights of different factors affecting slope stability are important. In this study, the

landslide-inducing factors can be divided into two main categories (Wu and Sidle 1995):

1. Internal factors: those that have decisive effects on landslides, including geology

(lithology), geomorphology (convexity), DEM (slope gradient, slope aspect, eleva-

tion), soil property, vegetation cover, flow distribution, and fractures.

2. External factors: those that trigger landslides suddenly, such as rainfall, earthquake,

and flood.

Generally, the variation in external factors is a short and usually unpredictable process,

and the distribution of internal factors affects LS.

The main data deriving the internal factors were achieved from the National Geomatics

Center (NGC) and other government sources (https://modaps.nascom.nasa.gov:8499/,

http://srtm.csi.cgiar.org/selection/inputCoord.asp, http://www.eq-icd.cn/webgis/download.

htm) (Table 2). Using an interpolation technique, the different data layers are converted to

grid maps with the same cell size of 1 km 9 1 km. The factors are described in the

following section.

Table 2 Data sources and specific use

Data types Description Specific use

Satellite/sensor Spatial
resolution

Acquired
year

Remote sensing data Terra,
Aqua/MODIS

250 m 2007 Vegetation
cover

Digital elevation
model (DEM)

SRTM 90 m 2000 Slope gradient,
aspect,
elevation

Geological maps N/A Scale: 1:500,000 2007 Lithology

Soil type maps N/A Scale: 1:3,000,000 2000 Soil property

Geomorphological maps N/A Scale: 1:3,000,000 2000 Convexity

River distribution maps N/A Scale: 1:3,000,000 2000 Flow

Seismic zone distribution
in China

N/A 2008 Fracture
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4.1.1 Lithology (Lith)

Landslides have been associated with many different geologic materials around China. In

some specific areas, there are relationships between many lithologies and landslide

occurrences. The structural features of bedrock promote landslide initiation in several

ways: (1) by forming weak surfaces that are prone to sliding; (2) by facilitating the

introduction of groundwater into the overlying soil mantle; and (3) by creating an

opportunity to destabilize the regolith because of weathering.

According to CDSTM (China Digital Science and Technology Museum, http://amuseum.

cdstm.cn/moudisaster/page/knowledgec.jsp?pid=3100502), the formation conditions of

landslides in China mainly involve the following lithologies: Jurassic (J), Cretaceous Mud-

stone (M), Shale (S), Argillaceous Sandstone (A), Siltstone (Si), Coal Beds (Co), Sandy Slate

(Sa), and Phyllite (P). These lithologies in China are mapped in Fig. 4a.

4.1.2 Convexity (Con)

Because slope movement is a phenomenon that occurs in a gravitational field, the higher

the degree of convexity, the more susceptible the slope fails. Thus, the platform of the

Fig. 4 Nine factors of landslides and their maps in China: lithology (a), convexity (b), slope gradient (c),
slope aspect (d), elevation (e), soil property (f), vegetation coverage (g), flow (h), fracture (i)
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slope is an important factor affecting slope stability. The types of convexity from geo-

morphological maps include concave, flat, and protruded (Fig. 4b).

4.1.3 Slope gradient (SG)

Slope gradient is a crucial factor in landslide initiation. With the increase in the SG, the

component force of gravity is in the slope direction, and the slope will be bound to higher

landslide risk (Dai et al. 2002). This study uses the 90-m-resolution DEM with the pre-

defined interval of slope gradient as 10�(Ercanoglu and Gokceoglu 2004) (Fig. 4c).

4.1.4 Slope aspect (SA)

Slope aspect strongly affects hydrological processes via evapotranspiration and weathering

processes in a drier environment. The slope aspect can be divided into nine directions from

the 90-m-resolution DEM (Fig. 4d). For example, the probability of landslide is almost

zero in the ‘flat’ areas.

4.1.5 Elevation (Elev)

Elevation is also a critical factor in landslide assessment (Ercanoglu and Gokceoglu 2004;

Park 2008). Landslide occurs in the central part of the hilly and mountainous areas. Few

landslides occur on the top of hills or mountains because most rocks on the top are

weathered and hard. The distinctive terrain features of China bring that most landslides

occur in the regions with lower altitudes (400–800 and 2,000–3,000 m) covering the first

and second level shapes (Zhang et al. 2009). We divided the elevation into 7 classes at

500-m intervals using the 90-m-resolution DEM in Fig. 4e.

4.1.6 Soil property (SP)

Similar to lithology, soil property is also a basis of landslide formation. Soils with loose

structures and vulnerability to shearing and weathering are subject to high LS. In China,

the distribution of soil exhibits some zonality. Soil color shows the information of organic

matter in the soil, drainage, and fertility. The soil color is accustomed to identify soil types.

The soil types that cause landslides on the basis of CDSTM are red soil (R), yellow soil

(Y), yellow–brown soil (Yb), brown soil (B), cinnamon soil (C), dark-brown soil (Db),

brown coniferous forest soil (BC), and fluvo-aquic soil (Fa) (Fig. 4f).

4.1.7 Vegetation coverage (VC)

Vegetation coverage plays a positive role in LS analysis. With remote sensing data,

vegetation coverage can be calculated on a larger scale. An effective method is to use the

Normalized Difference Vegetation Index (NDVI) (Eq. 1), which is defined as the ratio of

the difference and sum from the near-infrared band (NIR) and red band (R).

NDVI ¼ NIR� R

NIRþ R
ð1Þ

In this study, MODIS data covering China with a spatial resolution of 250 m collected in

2007 is used, and for every pixel, an NDVI value is obtained according to Eq. (1).

Subsequently, the vegetation coverage (VC) value is calculated as Eq. (2).
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VC ¼ NDVI� NDVImin

NDVImax � NDVImin

ð2Þ

NDVImax is the max NDVI value in the entire area of China, which may require an NDVI

for a cell of dense vegetation; NDVImin is the NDVI value in the area that may be a cell for

soil or rock (Wan 2009). VCs are divided into 5 classes at 20 % intervals.

4.1.8 Flow (Fl) and fracture (Fr) (Fig. 4h, i)

Finally, landslides correlate closely with the distribution of flows and fractures (Mont-

gomery et al. 2002). Normally, the closer the place is to rivers or fault zones, the greater

the possibility of landslide. By classifying the distances to flows and fractures, this study

uses 0.5-km intervals.

4.2 ANN landslide model

Artificial neural networks are generic nonlinear functions that have been broadly used to

solve complex problems such as land use classification through the establishment of

processing units, network topology, and training rules. Multi-layer perception (MLP), a

frequently used ANN, has one or more hidden layers between its input and output layers.

The number of neurons and the hidden layers can be empirical methods according to

different applications (Braspenning et al. 1995; Gong 1996). Three steps are involved in

ANN implementation, including training, weights estimation, and output results. The

trained data from input neurons are processed through hidden nodes to obtain output

values. For instance, the input of neuron j of a single hidden layer is expressed as:

netj ¼
Xt

i¼1

wijpi ð3Þ

where wij represents the weight between node i of the input layer and node j of the hidden

layer; pi is the input data at node i, which is the probability of the concerned cell having the

internal factor; and t represents the number of nodes on the input layer. The output value pi

produced through the hidden neuron is usually a nonlinear sigmoid function that is applied

to the weighted input data netj before being processed to the next layer. The equation is as

follows:

pj ¼ f ðnetjÞ ¼
1

1þ e�netj
ð4Þ

Among the many mature algorithms, the back-propagation (BP) algorithm has been widely

used in multi-factor model construction and is thus adopted in this study. In this algorithm,

the error function E is used to determine the accuracy of the output.

E ¼ 1

2

Xn

i¼1

ðTi � OiÞ2 ð5Þ

where Ti represents a target output and Oi is the corresponding network output. The

computational process terminates until E reaches the minimum, and the adjusted weights

are obtained.

In our LS ANN model, the LS values are estimated from the relative probabilities of

landslide-inducing factors through the network weights. The input layer includes nine
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factors (nodes), as mentioned above: lithology, convexity, gradient, aspect, elevation, soil

property, vegetation cover, flow, and fracture. The output layer has one output node

defined as the susceptibility of landslide occurrence (Fig. 5).

5 Results

5.1 Training of the LS ANN

5.1.1 Sample data selection

The developed ANN is implemented in MATLAB� software environment. In the ANN

training, the appropriate weights connecting the network nodes are established, so that the

LS map with a resolution of 1 km 9 1 km can be derived as the ANN output by mini-

mizing the error function.

To obtain the unknown weights of nine input factors, the calculation requires nine

sample data (nonlinear correlation) at least. If selected sample data are too much and

uneven, the network convergence speed may be slow and the accuracy will be not ideal.

Figure 2 shows the time and spatial distribution of 1,200 significant landslide events. The

result indicates most landslides uniformly spread over the southeast, middle, and southwest

of China. The periods of selected factors in Table 2 are all past the 2000 year, and

therefore, we select sample data from the records after 2000 to guarantee the temporal

consistency. The green points represent the sample locations with ID from 1 to 20 in our

study. The selecting rule guarantees the sample data are timely and spatially homogeneous

and is listed as follows.

First, we divide the base map into 64 segments by 5�-interval latitudes and 10�-interval

longitudes. Second, we assign successive real numbers for the intersections or the nearby

landslide points from left to right and top to bottom. Third, we regard the nearest landslide

point as a sample data when the distance between an intersection and the nearest landslide

point is less than 100 km. Figure 6 illustrates the locations of 20 selected sample data

(green points) without considering the intersections near the border. Thus, the method can

solve the timely and spatially heterogeneous problem. However, in the national scale, large

uncertainties exist depending on the accuracy of selected sample data. In Sect. 5.2, we will

test the result of LS map (Table 3).

Fig. 5 The LS ANN model
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5.1.2 LS ANN training

The first step in the LS ANN training is to compute the input data Pi (i = 1, 2, …, n) as the

node of the ANN in Fig. 5 or the internal factor at the location of a trained record. Because

Pi is the probability that the concerned map cell would have the characteristics of the

internal factors, it requires a conversion of the ith internal factor values or the ranges in

Table 4 to correspond probability values. We define the relative probability according to

the theory (Kumar et al. 2005).

RPij ¼
Pij

Pi

ð6Þ

Pi is the probability of the ith factor for any landslide event, Pij (j = 1, 2, …, n) is the

probability of the jth value given the ith factor, and n is the number of factors. In

implementation, the factors are realized by using the corresponding frequencies computed

from the trained records. The individual relative probability RPij is obtained by the total

number of records with both the ith factor and the jth value dividing the total number of

records by the ith factor.The occurrence frequencies reflect the number of landslide reports,

and the output data were set as the summation of different factor frequencies (7).

Z ¼ X1 þ X2 þ � � � þ Xn ð7Þ

Xn is the quantitative value from every factor; Z for the ANN trainings would be the

normalized Z0 between 0 and 1 with Eq. (8).

Fig. 6 The selection of trained samples
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Z 0 ¼ 1

1þ e�Z
� 0:5

� �
=0:5 ð8Þ

By the methods mentioned above, 17 trained samples and 3 tested samples selected

uniformly to be input data in the distribution maps of various factors are nonlinear cor-

relations in Tables 5, 6. In the normalized summation of the different frequencies, every

sample can be considered as the output data.

The number of neurons of the hidden layer is more than twice that of the input data. The

numbers of input, hidden, and output layers are 9, 19, and 1, respectively. The BP learning

algorithm, with a network training error of 10-3 and 1,000 training runs (Fig. 7), is

implemented to train the various ANN architectures. When the training reaches 146 times,

the mean squared error is below 10-3. The values of weight for each factor can be

calculated:

Weight ðLith; Con; SG; SA; Elev; SP; VC; Fl; FrÞ
¼ ð0:1020; 0:1650; 0:1473; 0:1405; 0:1028; 0:1481; 0:0083; 0:1318; 0:0542Þ

ð9Þ

With the trained network, the other 3 records are assessed and compared with the actual

results (Table 6).

Table 3 LS evaluation factors and classification (each factor is quantified with a number of classes. The
class values or ranges are listed)

Factors Classification

1 2 3 4 5 6 7 8

Lith J M S A Si Co Sa P

Con Concave Flat Protrude

SG 0�–10� 10�–20� 20�–30� 30�–40� 40�–50� [50�
SA East Southeast South Southwest West Northwest North Northeast

Elev (km) \0.5 0.5–1.0 1–1.5 1.5–2.0 2.0–2.5 2.5–3.0 [3.0

SP R Y Yb B C Db BC Fa

VC (%) \20 20–40 40–60 60–80 [80

Fl (km) \0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 2.5–3.0 [3.0

Fr (km) \0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 2.5–3.0 [3.0

Table 4 Occurrence frequencies of different input factors

Factors Classification

1 2 3 4 5 6 7 8

Lith 0.12 0.09 0.17 0.24 0.15 0.11 0.04 0.08

Con 0.58 0.26 0.16 0 0 0 0 0

SG 0 0.03 0.16 0.29 0.27 0.25 0 0

SA 0.14 0.16 0.18 0.17 0.15 0.09 0.09 0.08

Elev 0.01 0.14 0.17 0.22 0.19 0.19 0.08 0

SP 0.38 0.36 0.15 0.02 0.05 0.02 0 0.02

VC 0.34 0.25 0.23 0.11 0.07 0 0 0

Fl 0.30 0.25 0.18 0.12 0.06 0.04 0.02 0

Fr 0.36 0.20 0.15 0.13 0.06 0.05 0.05 0
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5.1.3 LS mapping and analysis

The output data show the LS indices values of the pixels. The higher the LS value is, the

more susceptible a pixel to the occurrence frequencies of landslides is. Based on the

1 km 9 1 km grid, the LS map of China is then produced by the ANN learning and

multiplying the weighted factor layers (Fig. 8). As shown in Fig. 8, the southwest of China

has the higher susceptibility indices than those in the other areas, which could also be

consistent with landslide reports from the news.

The values Z0 of output results in Table 5 are normalized between 0 and 1, and Table 7

shows the normalized values in five categories using the 0.2 intervals. LS map in China

then has the following classifications (Fig. 9a): 1—very low; 2—low; 3—moderate; 4—

high; 5—very high susceptibility. High-susceptibility regions of China account for 4.15 %

(4—high plus; 5—very high), while low-susceptibility (1—very low plus, 2—low) areas

account for more than 77 %.

Figure 9a demonstrates the hot spots of the high landslide potential provinces, where

Yunnan, Guizhou, Fujian, Taiwan, parts of Zhejiang, Sichuan, Guangxi, Guangdong, Ji-

angxi, Shaanxi, Hubei, Hunan, and Hainan are revealed to be landslide-prone areas. Many

Table 5 Relative probability estimated by the training process

ID Lith Con SG SA Elev SP VC Fl Fr Z Z’ Status

1 0 0.26 0 0.16 0.14 0 0.23 0 0 0.79 0.37 Stable

2 0 0.26 0 0.14 0.17 0 0.23 0 0 0.80 0.38 Stable

3 0 0.26 0 0.16 0.01 0 0.11 0 0 0.54 0.26 Stable

5 0 0.26 0 0.15 0.14 0.02 0.25 0 0 0.82 0.39 Stable

6 0 0.26 0 0.14 0.01 0.02 0.11 0 0 0.54 0.26 Stable

7 0.07 0.58 0.03 0.09 0.05 0.05 0.11 0.25 0 1.23 0.55 Unstable

8 0.04 0.58 0 0.09 0.05 0 0.23 0 0 0.99 0.46 Stable

9 0.04 0.16 0 0.16 0.08 0 0.11 0 0 0.55 0.27 Stable

11 0.17 0.58 0 0.16 0.22 0.38 0.07 0.3 0 1.88 0.74 Unstable

12 0.15 0.58 0 0.16 0.14 0.36 0.07 0 0 1.46 0.62 Unstable

13 0 0.58 0 0.09 0.08 0 0.23 0 0 0.98 0.45 Stable

14 0.24 0.26 0 0.08 0.01 0.38 0.11 0 0 1.08 0.49 Unstable

15 0 0.26 0 0.15 0.17 0.38 0.11 0.12 0 1.19 0.53 Unstable

16 0 0.26 0 0.14 0.14 0.38 0.11 0.18 0.36 1.57 0.66 Unstable

17 0 0.58 0 0.14 0.01 0.38 0.23 0.06 0 1.40 0.60 Unstable

18 0.17 0.58 0 0.09 0.14 0.36 0.11 0.24 0 1.69 0.69 Unstable

20 0.15 0.58 0.03 0.08 0.17 0.15 0.07 0 0 1.23 0.55 Unstable

Table 6 The evaluated results of the tested samples

ID Lith Con SG SA Elev SP VC Fl Fr Estimated results Actual results

4 0 0.26 0 0.17 0.08 0 0.11 0 0 0.27 Stable

10 0.11 0.26 0 0.09 0.17 0.05 0.11 0 0 0.46 Stable

19 0.11 0.58 0 0.08 0.01 0.38 0.11 0.25 0 0.61 Unstable
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exterior factors including rainfall, earthquake or flood and so on induce the occurrences of

landslides in these regions.

A 2.5-min grid global map of landslide hazard distribution by rainfall is available at

(http://sedac.ciesin.columbia.edu/data/set/ndh-landslide-hazard-distribution/metadata). The

hazard mapping incorporates a range of data on March 29, 2005, including slope gra-

dient, soil property, soil moisture conditions, precipitation, seismicity, and temperature

(Nadim et al. 2006). As shown in Fig. 9b, the rainfall landslide hazard areas mostly

belong to the high-susceptibility areas (parts of Sichuan, Yunnan, Taiwan, and Zhejiang),

and there are some small-scale landslides in parts of Tibet and Xinjiang. The map

reflects China’s LS locations and provides a useful method for studying and evaluating

landslide occurrences.

Fig. 7 Error and training times of ANN

Fig. 8 LS map of China based on multi-factors
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5.2 LS accuracy test

Many papers assigned the weights subjectively caused inaccuracy (Hong et al. 2007a, b;

Günther et al. 2012). The ANN methodology solves the problem of factor weights selection

in a nonlinear constitutive relation. Therefore, the quality of the LS map obtained relies

heavily on accuracy and scale of occurrence frequencies of different input factors and

Table 7 The LS classification
ID LS value Level Percentage (%)

1 0.00–0.20 Very low 29.61

2 0.20–0.40 Low 47.68

3 0.40–0.60 Moderate 18.56

4 0.60–0.80 High 4.04

5 0.80–1.00 Very high 0.11

Fig. 9 a Chinese landslide susceptibility classification map derived from surface multi-geospatial data;
b China’s landslide hazard hotspot map based on the NGI’s work in 2005 (Nadim et al. 2006)
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sample data derived from the landslide inventory. We devise the following method to test

the accuracy. If the result does not meet the requirements, we will return to reselect the

sample data uniformly to retrain the ANN.

Some of the landslide tested data are from authoritative worldwide network databases (United

States Geological Survey (USGS), http://landslides.usgs.gov/recent; EM-DAT International

Disaster Database, http://www.em-dat.net/; International Consortium on Landslides Website

(ICL), http://iclhq.org/). Landslide tested data of 112 events, triggered mainly by earthquakes,

rainfall, and weathering, are gathered to compare with LS classification map (Fig. 10).

Table 8 shows LS map accuracy evaluation with 112 worldwide check data. The

number of high- and very high-susceptibility regions account for 88.39 %, revealing that

the accuracy of ANN models meet landslide study demands. Meanwhile, 9 records are

spread around low-susceptibility areas, mainly because of the above-mentioned landslide

data uncertainty in Sect. 3.2.

6 Conclusion

The diversity, fuzziness, uncertainty, and randomness features of landslides occurrences

bring great difficulty in data processing. The processing capability of traditional methods is

Fig. 10 The overlay of the landslide test data on the LS map

Table 8 LS map accuracy eval-
uation with 112 worldwide check
data

The number of
landslide events

Percentage (%) The areas in
LS map

3 2.68 Very low

6 5.36 Low

5 4.46 Moderate

44 39.29 High

54 48.21 Very high

Total 112 100.00
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limited and results in much loss of useful information, degrading the reliability in results. A

powerful nonlinear mapping capability allows to simulate the possibilities of landslides

and the relationships among complex factors (Chacón et al. 2006).

A LS model is developed for the whole country of China by applying a scoring system

with a set of relevant factors based on BP ANNs. The BP ANNs merge nonlinear elements

by qualitative and quantitative indices. The results are tested by comparing with landslide

data reported by authoritative worldwide Web sites, and the accuracy of the network is

approximately 88.39 % and satisfies landslide study requirements in China. The high-

susceptibility areas, mainly spreading over the southwest of China, are characterized by the

presence of landslide-prone sedimentary rocks, high seismicity, frequent severe earth-

quakes and rainfall events, and significant human activities.

The LS evaluation and mapping of China in our study constitutes a preliminary step

toward detailed susceptibility and hazard research, is a useful method for hazard assess-

ment, and provides a theoretical basis for predicting and forecasting landslide disasters

throughout China.
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